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ABSTRACT 

The goal of the present study was to investigate the adaptive effects of variation in 

the direction of optic flow, experienced during linear treadmill walking, on modifying 

locomotor trajectory. Subjects (n = 30) walked on a motorized linear treadmill at 4.0 

kndh for 24 minutes while viewing the interior of a 3D virtual scene projected onto a 

scrccn 1.5 in in fioct oftheni. Thc virtiial scene depicted constant ~ e l f - m ~ h ~ n  eqiivalent 

to either 1) walking around the perimeter of a room to one’s left (Rotating Room group) 

2) walking down the center of a hallway (Infinite Hallway group). The scene was static 

for the first 4 minutes, and then constant rate self-motion was siniulated for the remaining 

20 minutes. Before and after the treadmill locomotion adaptation period, subjects 

performed five stepping trials where in each trial they marched in place to the beat of a 

metronome at 90 stepdmin while blindfolded in a quiet room. The subject’s final 

heading direction (deg), final X (for-aft, cm) and final Y (niedio-lateral, cni) positions 

were measured for each trial. During the treadmill locomotion adaptation period 

subject’s 3D torso position was measured. We found that subjects in the Rotating Room 

group as compared to the Infinite Hallway group: 1) showed significantly greater 

deviation during post exposure testing in the heading direction and Y position opposite to 

the direction of optic flow experienced during treadmill walking 2 )  showed a significant 

monotonically increasing torso yaw angular rotation bias in the direction of optic flow 

during the treadmill adaptation exposure period. Subjects in both groups showed greater 

forward translation (in the +X direction) during the post treadmill stepping task that 

differed significantly from their pre exposure performance. Subjects in both groups 

reported no perceptual deviation in position during the stepping tasks. We infer that 
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viewing simulated rotary self-motion during treadmill locomotion causes adaptive 

modification of sensory-motor integration in the control of position and trajectory during 

locomotion which functionally reflects adaptive changes in the integration of visual, 

vestibular, and proprioceptive cues. Such an adaptation in the control of position and 

heading direction during locomotion due to the congruence of sensory infomiation 

dcmonstraics the potcritial for adqtive trznsfer between sensorimotor systems and 

suggests a common neural site for the processing and self-motion perception and 

concurrent adaptation in motor output. This will result in lack of subjects’ perception of 

deviation of position and trajectory during the post treadmill step test while blind folded. 



INTRODUCTION 

Vision, more precisely - optic flow, is a fundamental parameter that modulates 

motor output during locomotion (Gibson 1966). Optic flow, as an independent 

component of visual sensory input, is essential for controlling the estimation of distances, 

heading direction, dynaniic balance and posture during locomotion (Warren et al. 1996; 

SarCy et al. 1999; Warren et al. 2301; Richards et al. 2004). Linear and rotating optic 

flow has been shown to cause directionally specific postural sway and positional 

deviations during treadmill and over ground walking (Warren et al. 1996; Keshner and 

Kenyon 2000). The rate at which people walk on a self-diiven treadmill has been shown 

to depend on the velocity of an artificial optic flow pattern along the line of sight relative 

to their walking speed (Prokop et al. 1997). Linear optic flow has also been shown to 

cause directionally specific postural sway and positional deviations during treadmill 

locomotion (Bardy et al. 1996; Bardy et al. 1999; Jahn et al. 2001; Warren et al. 1996; 

Warren et al. 2001). The effects of rotational optic flow have also been demonstrated. 

When oscillated in roll and viewed during quiet stance, scenes containing complex, 

realistic content caused more postural sway than scenes with simple radial patterns (Duh 

et al. 2002). While walking over ground in a stereoscopic virtual environment that rotated 

in roll, subjects showed compensatory torso rotation in the direction of scene rotation that 

resulted in positional variation away from a desired linear path (Keshner and Kenyon 

2000). 

Humans can rapidly readjust and recalibrate various characteristics of their gross 

movement activities depending on the interactions between optic flow and biomechanical 

factors during locomotion (Rieser et al. 1990; Rieser et al. 1995). Some of these 

characteristics include the estimation of distances to walk to reach a target and the 

direction of movement. Investigations on the directional control of locomotion have 
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shown that blindfolded subjects, after walking in place on a counterrotating platform or 

circular treadmill, while maintaining visual stationarity by keeping the torso and head 

orientations in the straight ahead direction, veered from their straight ahead trajectory in 

the same direction of the preceding turntable rotation (Gordon et al. 1995a; Gordon et al. 

1995b; Weber et al. 1998; Earhart et al. 2001; Earhart et al. 2002; Weber et al. 2002). 

Thcse authors have hypothesized that reinterpretation of intersegmental pruprioceptive 

cues, triggered by the conflict between stationary vision and the turning feet on the 

platform, induces veering of locomotor trajectory fi-om the straight ahead direction. 

Further experiments with concomitant optokinetic stimulation while stepping on a 

counter rotating platform caused a proportional increase in turning during post treadmill 

stepping in place (Jurgens et al. 1999). Jurgens, et al. (Jurgens et al. 1999) suggest that 

the previous result of adaptive modification of locomotor trajectory was the outcome of 

an adaptation of the somatosensory channel and not by a visual-somatosensory mismatch. 

However, subjects that are exposed to prolonged optokinetic stimulation, seated in the 

center of a rotating drum and watching a striped pattern, also generate curved walking 

trajectories in the direction opposite to that of  the optokinetic stiniulus when asked to step 

in place with their eyes closed (Kat0 et al. 1977; Gordon et al. 2003). Thus, optokinetic 

stimulation alone can cause an adaptive modification in the locomotion heading direction. 

In a series of experiments, Rieser, et al. (Rieser et al. 1990; Rieser et al. 1995) 

demonstrated that humans can reliably estimate the distance to a target and walk to it 

without vision. Importantly, this capability can be re calibrated after being exposed to a 

new relationship between the rates of walking relative to that of the optical flow of the 

surrounding environment (Rieser et al. 1995). Thus, humans have a flexible perceptual 



. 
motor system that has the ability to learn the covariation between the optical flow and the 

consequence of their walking in the environment (Rieser et al. 1995). 

The goal of this study was to determine if plastic adaptive niodification in 

locomotor trajectory, during a stepping task, could be achieved when exposed to a new 

relationship between the direction of optic flow, with matched optic flow rate, and that of 

walking during linear treadmill locomotion. Hence, subjects were lesled using a stepping 

in place test pre and post exposure to optic flow that either rotated about the subjects’ 

vertical axis (yaw optic flow rotation) or translated fore and aft in the direction of linear 

locomotion. Further, this study also aimed to investigate the underlying mechanisms of 

adaptation by measuring torso kinematics during the adaptive exposure period. 

METHODS 

Participants 

30 healthy subjects of average ((* 1 SD) age = 32.0 ( z t  1.3) yr., height = 167.4 (h 4.4) 

cni, and weight = 67.2 f 4.6 kg with nornial or corrected-to-nornial vision were recruited 

from the Hunian Test Subject Facility at Johnson Space Center (JSC) in Houston, TX. 

The experimental protocol was approved by the NASA-JSC Committee for the Protection 

of Hunian Subjects (CPHS), and informed consent was obtained prior to testing. 

Visual Scene Adaptation Protocol 

Prior to experimental trials, subjects walked on the treadmill until they were comfortable 

walking without holding onto the handrails (usually < 5 minutes). Subjects walked at 4.0 

km/h while viewing either the Rotating Room (RR group, Fig 1A) or the Infinite Corridor 



(IC group, Fig 1B) visual scene for 20 minutes continuously. An equal number of 

subjects were randomly assigned to the two groups. The scenes either rotated in yaw in 

the clockwise direction at a constant rate of 30 O / s  for the RR group or translated from 

fore to aft at a rate of 4 kndh for the IC group. The rotation rate of the Rotating Room 

visual scene was chosen such that the forward translation component of optic flow was 

equivalent to that seen in the Infinite Corridor visual scene. Previous studies have shown 

rotation rates close to this to be effective in causing sensations of self-motion (Watt et al. 

1993; Allison et al. 1999). Data were collected during 12O-sec epochs of time unifomily 

distributed during the walk period. The first data take while subjects walked on the 

treadmill included data obtained 1 min. before the scene started rotating while the scene 

was static (static epoch) and 1 min. after the scene started rotating (rotating epoch). The 

remainder of the data collection was unifomily timed through the remaining walk period. 

Subjects were instructed to fixate on the scene for the entire trial and try to immerse 

themselves in it without paying attention to their position on the treadmill belt. A spotter 

provided guiding coninlands (e.g., “move left”) when the subject approached the limits of 

the treadmill belt surface. 

Visual Optic Flow Scenes 

The monoscopic, passive-inimersive 3D visual scenes were created using graphic 

modeling software (3ds max 4; Discreet, Montreal, Que.) and rendered using virtual 

environment software (VRUT v. 2.5, Python v. 2.0) on a PC coniputer (2.2 GHz, Intel 

Pentiuni 4 processor, nVIDIA Quadro2 EX graphics card). Scenes either constantly 

rotated in yaw or constantly translated along the anterior-posterior (AP) body axis. The 
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rotating scene, the Rotating Room (Fig. lA), was a cubical room with simulated 

dimensions 12 x 12 x 6 m [length (line of sight) x width x height]. The Rotating Room 

was rich in polarizing visual content, including distinctive markings on the floor and 

ceiling and realistic texture-mapped objects such as trees, desks, chairs, and gravity-cued 

pictures. The subject’s simulated eyepoint was displaced 7.0 m to the right and 3.0 m 

back from the center of the Rotating Room as it rotated about an axis coincident with its 

center in the clockwise direction, creating the illusion that the subject was walking 

around the perimeter of the room to his or her left. The second scene, the Infinite 

Corridor (Fig. lB), was a rectangular chamber 6 m wide, 6 ni high, and “infinitely” long 

with polarized content similar to that in the Rotating Room. The subject’s simulated 

eyepoint was placed 1.82 ni above the floor and centered between the left and right walls 

while the hallway interior constantly translated such that it appeared as if the subject was 

walking down a hallway at a fixed rate. Simulated scene dimensions were chosen in 

order to maximize desired perceptual effects as determined from pilot studies. 

Stepping Task Protocol 

To determine the effects of exposure to the adaptation protocol on locomotor 

trajectory, subjects completed five stepping trials both before and after the visual scene 

adaptation period. While blindfolded, subjects were instructed to march in place to the 

sound of a metronome beating at 90 steps per minute for a total of 100 steps per trial. At 

the end of each trial, the subject’s final position (X - fore/aft, Y- lefthight) relative to the 

initial position (0 cni, 0 cni) and the intercepts of the line (Xmt, Yillt) indicating the 



heading orientation direction with respect to the initial heading orientation direction 

(straight ahead = 0 0 deg) were measured (see Fig. 2). Subjects were then walked back 

while still blind folded by a spotter to the origin in a random, winding pattern such that 

they were facing the same direction (feet parallel and toes pointing forward) at the 

beginning of each trial. Thus, subjects never received post-test feedback of their 

performance and final heading direction. Subjects performed the stepping task 

immediately after completing the 20 min visual scene adaptation period. 

Experimental Setup 

Scenes were back-projected onto a screen positioned 1.5 ni in front of the 

subject's eye point using a digital DPllOO projector (Kodak, Inc., Rochester, NY). 

Projected scenes subtended a 65" H x 48" V field-of-view (FOV) and were viewed by 

subjects while walking on a motorized treadmill (Trotter Instrument Corp., Aniherst, NY) 

with a surface area of 5 1 x 156 cni. To prevent injury through falling, each subject wore a 

full-body harness that was attached to an overhead gantry that shut the treadmill off if the 

subject fell. During nominal performance this harness provided no support and did not 

interfere with the natural movement of the trunk or limbs. The subjects wore head- 

mounted sport goggles (with plastic lens removed) that occluded view of peripheral 

objects (e.g., support-harness gantry) to eliminate orientation cues and help maximize 

immersion in the virtual scene. Subjects were also instructed to do their best to ininierse 

theniselves in the virtual scene, Foot-switches with force sensing resistors (Motion 

LabSystems, Inc., Baton Rouge, LA) were attached to the plantar surface of each shoe at 

the heel and toe and were sampled at 1000 Hz. These were used to define the temporal 



aspects of the gait cycle. A thumb on-off switch was used by the operator to indicate the 

onset of scene rotation and was sampled by the footswitch data acquisition system. 

Before each testing session, passive lightweight retro-reflective markers that 

served as tracking landmarks were placed on the torso to measure its 6 degree-of-freedom 

(DOF) movements while subjects walked on the treadmill viewing the visual scenes in 

front of ihem. A T-shaped vest with markers placed on the superior lip of the spinous 

process of the C7 vertebrae and at equal distances laterally from the midline at the level 

of the 10th thoracic vertebrae was worn about the subject's torso. Previous studies 

(Keshner et al. 1988) have shown that trunk motion can be used to characterize dynamic 

postural stability during locomotion. 

Three-dimensional motion data were recorded using a video-based motion 

measurement system (Motion Analysis Corp., Santa Rosa, CA) with respect to the origin 

coincident with the surface of the treadmill. Three time-synchronized CCD cameras were 

used for data collection with a sampling rate of 60 Hz. The resolution and repeatability 

were computed to 0.1 mni, and accuracy ranged from 0.05 mm to 0.16 mm (Miller et al. 

2002; Mulavara et al. 2002; Richards et al. 2004). 

DATA ANALYSIS 

Pre-post scene exposure 

The recorded final positions (X, Y) and the intercepts of the line (Xint, Yint) 

indicating the heading orientation direction, were used to calculate the heading 

orientation direction angle (HD). The HD was calculated and coded for direction of 

movement as follows: 

i n  
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where, CW and CCW are the clockwise and anticlockwise directions of subject 

movement with respect to their initial positions. These data obtained during the pre and 

post adaptation step tests for the two groups of subjects were collated and subjected to a 

repeated measures ANOVA (Within subject factors - Adaptation, 2 levels: pre and post; 

vs Across subject factor - Group: two levels - RR and IC). A student t- test was 

performed on the difference between the pre and post adaptation measures for the three 

variables. Data were analyzed at a significance level of .05 using a standard statistical 

software package (SPSS v. 10.0, Chicago, IL). 

Torso kinematics obtained during the visual scene adaptation protocol 

Marker data were processed to derive thrse-dimensionzl position information 

relative to a coordinate frame coincident with the surface of the treadmill. Thus, subjects 

walked toward the +X direction and the belt moved in the -X direction, the vertical axis 

orthogonal to the surface of the treadmill was +Z, and the Y axis was orthogonal to the 

X-Z plane. The marker trajectories were filtered using a fourth-order, low-pass, zero- 

phase-response, Buttenvorth filter with a cut-off frequency at 5 Hz. Torso body axis 
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rotation in the yaw plane (i.e. rotation about the Z global axes) was calculated using an 

Euler angle convention (Chao 1980; Mulavara et al. 2002). The torso yaw angular 

orientation time series data were then broken up into consecutive gait cycles (right hccl 

strike to following right heel strike) using the footswitch data within each epoch of each 

trial. The torso yaw angular orientation time series during the rotating epoch was 

nomiahzed by subtracting the average torso orientation during the static epoch. The 

magnitude and time at which maxima and minima of torso yaw rotation data during each 

gait cycle were calculated. A linear regression analysis was performed, for each subject 

in each group, using time as the independent variable and the torso maxima and minima 

as dependent variables, respectively, to evaluate the torso orientation bias during the 

adaptation period. Further, a single factor multivariate analysis of variance was 

perfomied on the torso maxima and minima slope (deghin) values across each group to 

test the hypothesis that during the adaptation period there was no significant difference 

between the torso orientation bias for the two groups of subjects. Data were analyzed at a 

significance level of 0.05 using a standard statistical software package (SPSS v. 10.0, 

Chicago, IL). 

RESULTS 

Pre post scene exposure 

Figure 3 shows the average (h one standard error of the mean) of the final heading 

direction (HD, deg; Figure 3A), final mediolateral (Y, cm; Figure 3B) position and the 

final fore-aft position (X, cm; Figure 3C) across all subjects pre and post exposure to the 

visual scene adaptation protocol for the two groups (RR and IC). Prior to the optic flow 
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exposure, individually subjects vaned their heading direction showing a tendency to 

deviate in both directions with the average over the five trials and across all subjects 

showing an overall tendency to deviate to the right which was not significantly different 

between the two groups. However, after being exposed to 20 minutes of optic flow 

during linear treadmill walking subjects in the IC group showed a tendency to deviate 

F.irther to their right that was significantly dilferent froin the subjects in the RR group 

who deviated to their left. A repeated measures ANOVA on HD and Y position revealed 

there was a significant interaction for Group * Adaptation [HD:F(l,27) = 5.192, p <0.031; 

Y position: F(1,29) = 5.208, p <0.030]. However, there was no significant main effect of 

Adaptation for HD and Y position (p > 0.05). A student t- test on the difference between 

the pre and post adaptation HD and Y position revealed a significant difference between 

the two groups (p < 0.05). Therefore, subjects in the RR group, exposed to the rotating 

optic flow in yaw, showed greater deviation in loconiotor trajectory opposite to the 

direction of optic flow during post exposure stepping that significantly differed from 

those in the IC group. Moreover, subjects in both groups reported no perception of 

deviation from their start positions. 

Repeated measures ANOVA on X position revealed there was a significant main 

effect of Adaptation [F(l,29) = 19.225, p <0.0001]. However, there was no significant 

interaction for Group * Adaptation for X position (p > 0.05). Therefore, subjects in both 

the RR and IC groups, exposed to the rotating optic flow in yaw or translating fore-aft 

optic flow, showed greater forward translation during post exposure stepping. 

Torso kinematics obtained during the visual scene adaptation protocol 



Figures 4(A-D) shows the linear curve fit'over the maxima and minima torso yaw 

angular position of all subjects while walking on the treadmill during the 20 minute 

exposure to the two moving visual scenes. Figure 5 shows the average (;t one standard 

error of the mean) slope of the linear regression of the maxima and minima torso yaw 

angular position of all subjects for the RR and IC groups. The multivariate single factor 

ANOVA on torso iiiininia and maxiiiia 1-evealed a significant difference belween the 

groups [torso minima: F(1,22) = 31.209, p <0.0005; torso maxima: F(1,22) = 13.576, p 

<0.001]. Therefore, subjects in the RR group, exposed to the rotating optic flow in yaw, 

showed greater torso yaw rotation bias to the right with respect to space during the 

exposure while walking on the treadmill than those in the IC group. 

DISCUSSION 

In this study, subjects walking on a linear treadmill were exposed to an optic flow 

pattern that matched their linear translation speed but varied in the direction of rotation. 

Subjects were instructed to fully immerse themselves in the virtual environment inducing 

self motion sensations of walking straight along the long corridor (IC Group) or walking 

around the room to their left (RR Group). Subjects were asked to perform a controlled 

stepping test to measure adaptive changes in loconiotor trajectory pre and post exposure 

to fhe optic flow stiniuli. 

Pre and post scene exposure 

The HD and Y position results indicate that during the post treadmill stepping 

task subjects in the RR group, viewing the rotating optic flow, tended to deviate in the 
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direction of the simulated self motion and opposite to the direction of optic flow, without 

any percept of rotation or deviation from their starting position. This was significantly 

different from the response seen with the subjects in the IC group during the post 

treadniill stepping task, wherein these subjects tended to step in place resulting in 

deviation in their heading direction that was not significantly different from their 

behavior prior to adaptive exposure. These results are similar to that of Gordon et al. 

(Gordon et al. 2003) and Kato, et al. (Kato et al. 1977). In these experiments, subjects 

performed a controlled stepping test before and after viewing moving black and white 

strip patterns while seated (optokinetic stiniulation alone) rotating at the rate of 45 

deg/sec or 30 deg/sec for periods of 150 sec and 30 min durations, respectively. Both 

studies showed that subjects tended to deviate in a direction opposite to the direction of 

optic flow stiniulus during post exposure stepping task. Our experiments coniirni that 

viewing a rotating optic flow in a virtual environment for 20 niin. during linear treadmill 

walking also causes an adaptive response that modifies the trajectory of locomotion 

during stepping in place while blindfolded in a direction opposite to the optical stiniulus 

direction. 

The significant effect of the Adaptation factor in the X direction measure during 

post treadmill stepping task in subjects from both groups shows that treadmill locomotion 

while viewing realistic optic flow with matched speed regardless of direction results in a 

recalibration of the visuomotor system controlling the ability to remain in one place. 

Such a recalibration have been shown previously when subjects attempted to walk in 

place after running on a treadmill or behind a moving golf cart without vision (Anstis 

1995; Durgin and Pelah 1999). 
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Torso kinematics obtained during the visual scene adaptation protocol 

The results of our study indicate that subjects in the RR group, introduce a 

monotonically increasing bias in their torso yaw rotation with respect to space in the 

direction of the optokinetic stimulation over the period of exposure which is significantly 

dilrerent from those in the iC group where no significant bias in torso rotation was 

observed. Such a torso rotation may indeed help maintain stability to continue walking 

on the linear treadmill when subjects are immersed in the self motion of walking around 

the comer in a virtual room towards their left. However, the bias of torso position re 

space may also introduce a bias with respect to the foot motion and cause an adaptation 

of the intersegmental proprioceptive signal in terms of the heading direction similar to 

those reported in the podokinetic adaptation experiments (Gordon et al. 1995a; Gordon et 

al. 1995b; Weber et al. 1998; Jurgens et al. 1999). Further, in the podokinetic adaptation 

experiments of Jurgens, et al. (Jurgens et al. 1999) subjects showed an additive response 

to the podokinetic and visual optokinetic rotation. It should be noted that in these 

podokinetic adaptation experiments, subjects were asked to walk on a circular rotating 

treadmill or rotating drum by keeping their head and torso in the straight ahead direction 

while they counter rotated their foot to the support surface motion to maintain their 

position on the moving surface. In the present study, the bias in the torso yaw angular 

position relative to the spatial straight ahead direction was introduced when subjects were 

walking on a linear treadmill and viewing a rotating optokinetic flow pattern about the 

yaw axis. It should also be noted that in the present study, subjects fixated their gaze on 

the imposed virtual environment directly in front of them allowing them to hl ly  



experience self motion during the visual scene exposure period. Such a disposition of 

holding the head to fixate gaze in the straight ahead direction with respect to space will 

also result in a head re torso bias that is monotonically increasing through the exposure 

period. Thus, subjects walked along the direction of the linear treadmill belt (fore-aft 

motion) with the feet moving in the same direction along with it and their heads fixated 

on the visual optic flow presented in f h t  oftheni while their torso was rotated about 

their vertical axis and biased in the direction of the optic flow. This may result in the 

rotated perception of their straight ahead via the linear summation of the vestibular and 

proprioceptive signals (Mergner et al. 1991; Mergner et al. 1993). 

Common neural site estimating and controlling heading direction during locomotion 

The present results show that viewing simulated rotary self-motion during linear 

treadmill locomotion causes adaptive modification of sensory-motor integration for 

estimating the trajectory during post treadmill stepping tasks. Such an adaptation of the 

heading direction is accompanied by a lack of subjects perception of deviation of position 

during the post treadmill step test while blind folded. Similar lack of perception of 

changes in locomotor trajectory have been reported in the literature after the podokinetic 

adaptation paradigm as well as after the exposure to rotating optic flow while seated 

during the post adaptation stepping tasks (Gordon et al. 1995a; Gordon et al. 1995b; 

Weber et al. 1998; Gordon et al. 2003; Jurgens et al. 1999). Previous works on the 

mechanisms involved in the estimation of self turning in the dark have resulted in the 

hypothesis of fusion of sensory infomiation from multiple modalities (Jurgens et al. 

1999). A number of studies have shown the transfer of adaptation from the systems 
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interpreting optic flow to the motor system. There are numerous exaniples of optokinetic 

stimulus causing modification of gain of the vestibulo-ocular reflex (Schor and Westall 

1986) and modification of the VOR affecting the gain of the optokinetic nystagmus 

response (Aoki and Yagi 1988). Also, previous research on a visuomotor task of pointing 

has shown a transfer of adaptation after modifying the gain of the VOR (Bloomberg et al. 

2000). These studies demonstrate the poteniial for adaptive transfer between various 

motor systems and suggest a common neural site for the processing and sclf-motion 

perception and concurrent adaptation in motor output. 

Various cortical areas have been implicated in the processing of this synergetic 

interplay between optic flow and other sensory modalities. The dorsal stream of primate 

cortex contains motion processing areas that are selective for optic flow and self-niotion 

(Lappe et al. 1999). One such functionally specialized area is the ventral intraparietal area 

(VIP) within the posterior parietal cortex of the primate (Breninier et al. 2001). The VIP 

contains many neurons that show directionally selective discharges to stimuli from 

multiple modalities including moving visual, tactile, vestibular, or auditory stimuli. 

Functional imaging data on humans also reveal a network of cortical areas, one of which 

is located in the depth of human intraparietal sulcus, that respond to niultiniodal stimuli 

conveying motion infomiation (Breninier et al. 200 1). Accordingly, these authors have 

suggested that this area constitutes the human equivalent of primate area VIP. Studies of 

monkeys strongly suggested that VIP responds to optic flow and is involved in the 

encoding of self motion and heading direction (Bremmer et al. 2002; Schlack et al. 2002; 

Zhang and Britten 2004; Zhang et al. 2004). In addition to VIP, the medial superior 

teniporal area of extrastriate cortex (MST) is suggested to contain sufficient information 
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for threshold judgments of optic flow (Heuer and Britten 2004), and is suggested to have 

a role in processing of heading direction and perception of self motion (Britten and van 

Wezel 1998; Britten and Van Wezel2002; Breninier et al. 1999). These cortical areas 

maybe involved in providing infomiation for locomotor heading direction and niay be 

involved in the adaptive transfer between motor output modalities. Therefore, vision, 

vestibular and soniatosensov inhnat ion niay be proecsscd as a weighted smi and 

therefore produce a perceived change in heading direction when the central interpretation 

of one of the sensory channels is modified. Importantly, this change in heading direction 

may not be perceived by other sensory modalities (i.e. vestibular) because of central 

reinterpretation of self-niotion perception induced by exposure to optic flow. 
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Figure Legends 

Figure 1 : Subjects viewed either the Rotating Room (RR group, A) rotating in yaw in the 

clockwise direction or the Infinite Corridor (IC group, B) translating from fore to aft at 

constant velocity during the rotating epoch of the visual scene adaptation protocol. 

Figure 2: Axes orientation and measures calculated during the stepping task protocol: the 

subject’s final position (X - forelaft, Y- lewright) relative to the initial position (0 cm, 0 

cm) and the heading direction with respect to the initial heading orientation direction 

(straight ahead = 0 0 deg). 

Figure 3: The average (* one standard error of the mean) of the final heading direction 

(HD, deg; A), final mediolateral (Y, cm; B) position and the final fore-aft position (X, 

cm; C) across all subjects pre and post exposure to the visual scene adaptation protocol 

for the RR group (closed squares, J and the IC group (closed diamond, -). 

Figure 4: The linear curve fit over the minima (A and C) and maxima (B and D) torso 

yaw angular position of all subjects while walking on the treadmill during the 20 minute 

exposure to the visual scene adaptation protocol for the IC group (A and B) and the RR 

group (C and D). The torso maxima and minima data during the rotating epoch, which 

was nornialized with respect to the static epoch, is shown. 



Figure 5: The average (=k one standard error of the mean) slope of the linear regression of 

the maxima (closed squares, -) and minima (closed diamond, 3 torso yaw angular 

position of all subjects for the RR (Rotating) and IC (Hallway) groups. 
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